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INTRODUCTION 

This report constitutes a Semi-Annual report for 

contract N00014-73~C-0270 administered by the office of 

Naval Research.  The research is being carriec out at 
3 

Systems, Science and Software. (S ) 

The research performed under this contract is a 

continuation of work begun under a previous contract at 

S  to investigate methods for determining the sensitivity 

of the results of complex calculations to uncertainties 

in the modeling parameters entering the calculations. 

The emphasis to date has been concentrated on non- 

equilibrium chemical kinetics systems, to determine the 

sensitivity of calculated concentrations to experimental 

uncertainties in the rate coefficients. 

In the previous contract, a method called the 

Fourier Amplitude Sensitivity Test (FAST) was developed 

and applied to two simple chemical systems.  It was shown 

that the method does provide a measure of the relative 

•contribution from each rate constant uncertainty to the 

uncei-uainty of the calculated concentrations. 

The present research effort is just getting under 

way, and consists in applying FAST to two particular 

chemical kinetics problems of interest to the high 

altitude fireball community.  Results from this work 

will be available soon. 
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The work that was done in the previous contract has 

recently been written up in two companion papers which 

have been accepted by the Journal of Chemical Physics for 

publication.  Preprints of these two papers are included 

as the remainder of this report. 
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ABSTRACT 

I 

• 

A method has been developed to investigate the sensitivity of the solutions 

of large sets of coupled, non-linear rate equations to uncertainties in the rate 

coefficients.    This method is based on varying all  the rate coefficients simul- 

taneously through the introduction of a parameter in such a way that the output 

concentrations become periodic ^unctions of this parameter at any given time t. 

The concentration of the chemical species are then Fourier analysed at time t. 

We show via an application of Weyl's ergodic theorem that a subset of the Fourier 

coefficients is related to U^V the rate of change of the concentration of 

species r with respect to the rate constant for reaction a averaged over the 

uncertainties of all  the other rate coefficients.    Thus a large Fourier coeffi- 

cient corresponds to a large sensitivity, a small  Fourier coefficient corresponds 

to a small sensitivity.    The amount of numerical  integration required to calcu- 

late these Fourier coefficients is considerably less than that required in tests 

of sensitivity where one varies one rate coefficient at a time, while holding 

all others fixed.    The Fourier method developed in this paper is not limited 

to chemical rate equation, but can be applied to the study of the sensitivity 

of any large system of coupled, non-linear differential  equations with respect 

to the uncertainties in the modeling parameters. 
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I. Introduction 

Sets of coupled, non-linear rate equations arise in a number of disciplines. 

A classic example is that of chemical rate equations. In ne study of combustion, 

air-pollution, upper atmosphere phenomena and chemical lasers as many as 100 

coupled rate equations involving some 50 separate species may be needed to 

account for the properties of such systems. One is then faced with the problem 

of solving a large set of coupled, non-linear differential equations of the form 

dc 
dt i^c-do 

(i.i) 

when t  is a vector of concentrations, {k} a set of rate coefficients and f  some 

complicated function of the concentrations. While one may prove existence and 

stability theorems for the equilibrium poir,t(1), the only way to solve these 

equations, i.e. to obtain all the species concentrations as functions of time, 

is through the use of a high-speed computer. 

Unfortunately, the rate coefficients (or cross sections) for many reactions 

are not known with high accuracy and indeed may be uncertain by one or more 

orders of magnitude. This gives rise to the very important problem of 

"sensitivity" which may be defined as the effect of uncertainties in the rate 

coefficients on the calculated concentrations of all the various intermediate 

and product species. The uncertainty in the rate coefficients of certain 

"important" reactions in the reaction scheme may have a significant effect on 

the.output function (for instance, concentration at time t), while uncertainties 

of the same magnitude in rate coefficients of "unimportant" reactions in the 

reaction scheme may hardly effect the output function. The reliability of the 
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output numbers clearly cannot be established without knowledge of the sensitivity 

of the output data to the uncertainty in the input parameters. 

The problem is to find a practical method of determining the effects of 

the uncertainties in the rate coefficients on the solutions of the rate equations. 

Since we are interested in the situation where the uncertainties in the rate 

coefficient may be orders of magnitude, linearization schemes are not appropriate. 

A "brute force' method of investigating the setisitivity is not feasible as can 

readily be seen from the following example. Suppose we have a reaction scheme 

which has n coupled reactions involving m different chemical species. Let us 

furthermore assume that we wish to calculate the concentrations of the m species 

at some time t for z different values each of the 2n rate coefficients. If we 

now change one rate coefficient at a time while holding all the others fixed, 

we would have to carry out z " integrations of the  rate equation (1.1) to time t. 

For the m different species, this procedure will give rise to a print-out of 
On 

m(z)  concentrations. If we know to a good accuracy the equilibrium constants 

for all the reactions and apply the principle of detailed balance, the number 

of independent rate coefficients will be reduced to n and we would have to carry 

out z integrations up to time t for each species m. In either case, for n 

large, it is obvious that the time and expense involved in such an analysis of 

sensitivity is prohibitive and the print-outs so numerous as to defy a simple 

analysis of the results. Clearly, one needs to devise some more powerful 

method for the study of sensitivity. 

Our approach to this problem is to ask for a less detailed description of 

the effect of rate coefficient uncertainty on the output function at any given 

time. We vary all the rate coefficients simultaneously so as to explore the 

■3- 
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entire space of uncertainties in the rate coefficient set {k}. As will be seen 

below, this turns out to be equivalent to varying a single rate coefficient and 

then averaging the attendant concentration changes over the uncertainties of all 

tfie other rate coefficients, where we express this uncertainty in terms of a 

probability distribution. Our approach is thus related to a "mean field" theory 

where we represent the fluctuations QF the field by the uncertainties in the 

(n-1) rate coefficients over which we average. 

To carry out this program, we relate each rate coefficient k. to a frequency 

üj.j and Introduce a parameter s which simultaneously varies all the rate coef- 

ficients in such a way that the concentrations at a fixed time become periodic 

functions of s. The concentrations can then be Fourier analyzed. We then show 

that a certain subset of these Fourier coefficients can be related to the first 

partial derivative of the concentration c. of species 1 with respect to a rate 

coefficient k^ averaged over the uncertainties of all the other rate coefficients. 

A large value of the Fourier coefficient A'1*^ then shows that (nA/is large, 

i.e. the effect of a change in the I'th  rate coefficient on the concentration 

of species i is significant. Conversely, a small Fourier coefficient A^ 

/öci \ "j 
indicates that/r-r-> is small, i.e". the effect of the variations of the j'th 

rate coefficient on the concentration of species i is small. In order to calcu- 

late these Fourier coefficients, we must integrate the rate equations numerically 

up to the desired time for each value of the parameter s. The number of s values 

which we include in our parameter set determines the accuracy to which we can 

calculate the Fourier coefficient; the larger the set of s values, the more 

accurate the determination of the Fourier coefficients. 

Since we must still perform numerical integrations of the rate equations 
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(1.1),  the question arises why  this method is to be preferred to the more 

direct method of varying each rate coefficient separately while keeping all 

others fixed.    As will  be shown  in paper II, which deals primarily with the 

computer calculations,  the number of integrations required by the Fourier 

method is 0(n ) where r is a small   integer (r<10) which depends upon the choice 

of the frequencies u.,  1 = l,2,...,n.    It can readily be verified that for n, 

z large,  n <(z)  .    The computational  economy of this method of analysis thus 

becomes more pronounced as n,  the number of reactions,  increases.    The reason 

for this reduction in the number of required integrations up to time t is to 

be found in the fact that in  the Fourier method we sample  the c(k) space at 

a set of points determined by the values of the set {s}  and the vector £, 

whereas  the "brute force" method involves neither   sampling  nor the simultaneous 

variation of the set of rate coefficients {k}  and thus requires many 

more integrations of the rate equations.    As will  be clear from the body of 

the paper,  this sampling in a certain sense corresponds to the avere-jing over 

all  the rate coefficients.    The reduction in the number of required integrations 

is thus intimately related to the use of a "mean field" theory. 

Our results are presented in two papers,  I and II.    In paper I, we present 

the theoretical basis of our method without explicit reference to the verifying 

computer experiments.    In paper II, we present the results of our computer 

calculations as well as a detailed discussion of the problems  involved in such 

calculations. 

It should be pointed out that the utility of this Fourier analysis method 

of testing sensitivity extends  beyond the confines of chemical   kinetics and 

beyond the confines of differential  equations.    Large sets of coupled, non- 

linear equations are used in many fields such as economics,  population dynamics, 

weather forecasting, systems analysis, operations research,  etc.  for modeling 

- 5 - 
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and predictive purposes. As has been pointed out by a number of investigators, 

it is important that sensitivity tests be carried out on such systems to 

Identify the critical parameters and to validate the applicability of the 

models. The method developed here can be applied to any set of equations, 

differential, integral, algebraic, etc., which yield an output as a complex 

function of many parameters. In fact, we have used an analytic function of 

several variables to test some of our ideas. We plan to apply this Fourier 

method to the analysis of other complex systems in the near future. 
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II. Fourier Aria1_vs_j_s. 

The rate equation for coupled chemical reactions which obey the law of 

mass action can be written in the form 

lc.  A    I"  m   '      _JIL_  M ■] dc 

(2.1) 

(i=1i...,m) 

VM ■"V.i-V.i 
where CjCkp^Jt^t) is the concentration of species i at time t, 

is the stoichion.etric coefficient of the species i in reaction r. with M... .',n 

labeling the different reactions in the reaction System, and „here k (k ) is 

the forward (backward) rate coefficient for reaction r. The coefficients ^ , 

and vr>1.are non-negative integers so that the stoichioraotric coefficient 

vn. defined above can be positive, negative or zero. Fron, the fonn of the rate 

equations (2.1) one can prove that the concentrations are bounded and non-neg.tive, 

that they are continuous functions of the tin,e and the rate coefficients and 

that an equilibrium point exists. ^^ 

In order to determine the effects of uncertainties in the rate coefficients 

k±r on the concentrations c. at time t a systematic method for varying the k's 

must be developed. We define 

and 

k, = k(0)p
ui 

"i = ^(sin i^s) 

(i=l,.. ..m) (2.2) 

(2.3) 

where kj ^is the "best value" of the rate coefficient (i.e. the one which the 

investigator believes to be the best available value based on experiments or 

calculations), the "frequency" .. is a positive integer, s is a parameter and f 
i 

-7- 
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is a function to be determined. The introduction of the parameter u. and the 

form of Eq. (2.2) permits one to effect readily order of magnitude changes in 

the rate coefficients. The form of equation (2.3) permits one to vary simul- 

taneously all the rate coefficients by varying the parameter s. The rapidity 

of the variation is determined for each k. by the magnitude of the UJ.'S. The 

a,i are chosen to be positive integers in order that the concentrations at a 

fixed time t become periodic functions of s with period Zr.: 

C^Sit) = 0.(5 + Zvlt) (2s4) 

In the development to follow we suppress this dependence of the concentrations 

on time, it being understood that the analysis is carried out for a fixed time t. 

The concentration as a function of s describes a closed path. That is. 

for each i and for every value of s we obtain a point in t  space with value 

c.{t);  as s changes by Z,  we return to the same values of t  and Ü. [see eqs. 

(2.2) and (2.3)]. and. from equation (2,4), to the same value c.(s). Since 

c^s) is periodic on 2n we may expand it in a Fourier series 

.(i) 

r=l \ 
A^ sin rs + B^ cos rs (2.5) 

In the analysis presented below we are interested only in the Fourier sine 

coefficients Ar that correspond to the original input frequencies to., i.e. the 

coefficients given by 

•'o 
s ds (2.6) 

a = 1,2 n 

We now wish to relate the Fourier coefficients A(i) to the effect of the 

■^■»*..~~ IMtWWIIIillMi|imWlilllHI«HP"'J^ 
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variation of the rate coefficients kr and the concentrations c. In order to 

do this it is necessary to relate the s- space integral cr Eq. (2.6) to a n- 

dirnensional integral over the entire u space. It can be shown that if the 

entire u space is covered densely as s is varied, then the integrals over the 

s- space and the u space yield identical results. This is just a statement 

of the ergodic theorem which permits one to equate time and phase space averages 

in statistical mechanics.(2) If ehe frequencies ».  in Eq. (2.3) were chosen to 

be incommensurate, then the function c^s) i.e. the concentration as a function 

of the parameter s, would be an almost periodic function. This implies that 

the path in the space Rn(3), where the Q's are defined by 

8^= u).jS   (mod 2Tr) (2 7) 

returns arbitrarily close to any initial point as s—. One could then equate 

the s- space integral with the integral over the n- dimensional Q space as was 

(3) 
first proved by Weyl.v ' However, the use of an incommensurate set of frequencies 

UK in Eq. (2.3) would require that the numerical evaluation of the Fourier 

coefficients A^ of Eq. (2.6) be carried out over an infinite period. This 

clearly is not a feasible procedure on any known computer. 

It is for this reason that we introduce integer frequencies w. in Eq. (2.3). 

Their use leads to a finite period (0 to 2n) analysis which can readily be 

handled on a computer. Tnis will give rise to an error in the analysis since 

now the "phase point" will no longer densely cover the Ü space as s is varied 

and the s-space and u space integrals therefore do not yield identical results. 

Let us for tne moment ignore this error and use Weyl's theorem for our 

periodic function c(s). We write 

•2n   fZit  n 
Ai) 

2    /»en rev  n 

*%      (27T)" /   j ii -j -rV-'-'V Sin 9£   •      (2-8) 

-9- 
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This expression can be put in a more suggestive form as follows. The fc'th 

integral is rewritten by integration by parts as 

.2n 1_ 
2TI 

Jo Jrs 
^ w:cos \ (2.9) 

where the boundary term has vanished by the periodicity of the integrand. The 

use of Eq.(2.9)then permits us to rewrite Eq.(2.8) as 

A (i) _ 2 
2*  r21T f^  f^ n 

^io "Jo fl 
d8j S- "s a

t (2.10) 
s   (21" •'o   •'o jM   ' ""« 

The 8 space integral must now be related to the u space integral. The transfor- 

mation is (see Eqs. (2.3) and (2.7)) 

öf.(sin 9.) 
dUj 5 sin 6.  cos ei düi (2.11) 

where we require that f. be a monotonic function of its argument. Then 

Av,y = ^- J^ 
^(-D   %(-!) ii cos o 

3H 

at.^sin y~T 

j "ö sin 0. 
J 

(T) 

(2.12) 

In order to obtain a definite relation between Au; and öc./au    we must choose 

some particular form for the function Msin 0-).    There arc several  choices which 

lead to useful  expressions for the A^1'; as will   be seen below,  a particularly 

advantageous choice is to set 

w 

of.(sin 9.) 
J J 2 1 

a sin Qf   cos 0j = ^" ' 

here ai  is a parameter.    The use of Eq.   (2.13)  in Eq.   (2.12)  leads to 

(2.13) 

-10- 
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äc, 
• a. cos 9. — 

J    J j öu (2.14) 

Integration of Eq.   (2.13) yields 

fj(sin Q.) = u. =    ! 

J      2a, 
fl  + sin 0," 

n   l^lTn-Q^ (2.15) 

and also indicates the range of integration in Eq.   (2.14) 

as a function of Uj  from Eq.   (2.15)  gives for Eq.   (2.14) 

ixprossing cos 0 

,(1) 
Z**0       /•+» n 

7T "-OJ J-ca     -j = J 

ÖC. 

j    cosh a.u.    öu 
J J        ^ 

(2.16) 

Since 

+» n a 
du.  i3  

J cosh  a.u. 
j=l J J 

(2.17) 

we  obtain as our final  result 

(2.18) 

where the bracket in Eq. (2.18) is defined by 
r00  r+00 n 

TT" p(u ; a.) Y(u1)...,u ) 
(Yd 

du. 

Jr**1  r+co n 
I ...    TT p(u.; a.) du. 

(2.19) 

and 
a . 

p(u.;a.) = —i 
J J   cosh a.u. 

J  J 
(2.20) 

The function P(u.;aj) can be interpreted as a distribution function in U space 

which weights the uncertainty in the rate coefficients. Equation (2.18) is the 

■n- 
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desired relation between the Fourier coefficient A'1' and the change in the 

concentration of species i witn a change in the i'th rate coefficient, öc./öu., 
1   X 

averaged over the changes of all the other rate coefficients. 

The particular form of f. (sin 0.) that we have chosen, Eq. (2.15) has 

lead to a weight function p(u.;a.) for each rate coefficient, Eq. (2.20), which 

has several convenient properties. As a function of u., the function p(u.;a.) 
J J   J 

is symmetrically bell  shaped about u.=0 corresponding to k.=k(0',  the "best" 
j J J 

value of the rate coefficient k.. As a., which is a parameter at our disposal, 
J J 

is increased, the weight function p(u.;a,) narrows about u.=0; this corresponds 
J   J J 

to a decreased spread in the values of the rate constant k., i.e. it corresponds 
J 

to a narrower range of the uncertainty of k. around k\  '.    In the limit as a. 
•JO J 

one obtains 

lim      p(u.;a.) = TT6(U.) 
a- *co J J J 

(2.21) 

where ö(x) is the delta function of argument x which implies that the rate con- 

\  '.    When some information is available 
J 

of the rate coefficient k. about 

its "best" value k!|u/, one can determine the a. through the standard deviation 

of the values in Ü space 

stant is known with certainty to be k 

on the spread and distribution 

,(o) 

9   i Z*00 u . a- du . 

J   ir JL«  cosh a.u. 
Hi _i (2.22) 

from which it follows that 

,    - ^      1 
J      2    ,.2,1/2 

^ 

(2.23) 
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The parameter a,  thus permits us to  introduce explicitly the spread of uncertain- 
w 

ties in the values of the rate coefficients into our analysis. 

we must first choose a suitable To calculate the Fourier coefficients A^1' 

sot of u-'s and a.'s. What constitutes a "suitable" set of w's will be discussed 
v J 

in the next section in conjunction with the error analysis and in more detail 

in paper II. The set of u-'s defines the u.'s as  a function of s according to 

Eqs. (2.3), (2.7) and (2.15). For each value of s one obtains a value of the 

concentration c.^ ,... ,k ). In principle one can then compute the A^1' to any 

desired accuracy by taking enough values of s, 

: ^irq 
m , q = ]t2,...,n. (2.24) 

where m is some integer. 

It is important to point out that our main interest is in identifying those 

rate coefficients whose variation significantly effects the concentration c. 

of a species i at time t, and those rate coefficients whose variation has, only 

a minimal effect on the species concentration c. Thus if one of the Fourier 

coefficients, say A^ , is one or more orders of magnitude larger than all 

other coefficients A'1', i  = 1,2,....n, U/j), than the variation of the j'th 
"A 

rate coefficient k., clearly has a larger effect on the concentration c.(t) 

than the variation of the other rate coefficients. If on the other hand all 

the coefficients A^ ', i =  l,2,...,n, are of the same order or magnitude, 

then the concentration of species i at time t, c.(t), is effected essentially 

equally by the variation of any of the rate coefficients k.. 

One problem with the above analysis must be pointed out. The Fourier 

coefficient A'1' of Eq. (2.18) may be small either because ac./öu„ is small over 
i  ^ 

■13- 
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the whole range of integration of Eq. (2.19), which is the case discussed above, 

or because ö^./öu^ changes sign one or more tines in the range of integration. 

Thus, a small value of A^1' does not necessarily imply that the concentration c. 
i 1 

is insensitive to changes in the rate coeFficients. The remedy for this diffi- 

culty would be to find a relation between the Fourier coefficients, or a combination 

of Fourier coefficients, and an everywhere positive (or everywhere negative) 

function of the rate of change of the concentrations with rate coefficients, such 

as for instance ((öc^./öu^) >. We have, however, not been able to establish 

such a relationship and it seems doubtful that a simple relationship of this form 

exists. In carrying out computer calculations U should, however, not be too 

difficult to verify whether öCj/öu^ at any given time t is monotone or not in 

the range of integration over the u space. 

Thus while one can assert that a large A^1' implies high sensitivity of the 
i 

concentration of species i with respect to changes in the rate coefficient kn 

the converse statement does not necessarily follow without checking on the mono- 

tonicity of Bc/öu as discussed above. 

* 
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III. Choice of the Frequencies w.. 

Hf 

As v/e have mentioned above, the application of WeyTs theorem in going from s 

space, Eq. (2.6), to the u space, Eq. (2.16), via the 8 space, Eq. (2.8), must lead to 

an error in the analysis since we use commensurate (integer) frequencies. This 

error can be minimized by a judicious choice of the integer frequencies ^ and 

the number and magnitude of the m values of the parameter s given by Eq. (2.24). 

We limit ourselves here to some qualitative remarks which will, however, clearly 

indicate the nature of tne problem. 

The integer frequencies u. lead, according to Eqs. (2.7) and (2.24), to a 

covering of the n dimensional 0 space by an array of points as q takes on its 

integer values q=l,2,..,m. Clearly one obtains a better coverage of tiie 6 space 

and thus reduces the error in applying WeyTs theorem if one can increase the 

density of points in the n-dimensional hypercube and if one can distribute the 

points uniformly within the space. Since Z  and q are both integer, the points 

to-s (mod 2-n)  will form a regular lattice in t) space. Our objective will be to 

make this point lattice, which is completely generated by a unit eel 1, as uniform 

as possiole in all n directions by a judicious choice of the u's. As our measure 

of uniformity we take a nypercubic unit cell. Without further information about 

tne behavior of the output function this seems the most reasonable choice. 

For a fixed number m of s points, chosen for computational convenience, 

we will try to find a vector 3 (of the infinite set of u's) which gives rise 

to a nypercubic unit cell. Once having done this we can assert, without loss 

of generality, that =£=• lies along one edge of this hypercubic unit cell whose 

? I"vl 
lergth is -—^- . There are now two ways to compute tne volume V of the 

-1 
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i  1 

unit cell. In the n dimensional "Ö space, it follows from the above construction 

that 

■•*i v n 

{*¥-) (3.1). 

But. we also know tfiat the total volume of the n-dimonsional "5 space is (2;:)n, 

Since there are m unit cells in that space, it follows that 

v=it2")n 

Equating (3.1) and (3.2) then yields 

n-1 

(3.2) 

m n 
(3.3) 

for the 'relation between the iiiininium length of the vector u, the dimension n 

and the number of s points, m, for a point lattice composed of hypercibic 

unit cells. 

The condition expressed in equation (3.3) yields important insight into 

the judicious choice of tfie frequencies w..    For systems with large dimensions, 

i.e. a large number n of rate coefficients (or coupling parameters in general;, 

|ü)| approaches m. Thus, the choice of the number m of s points for the numerical 

computation determines the value of u and thus guides one in the choice of 

the UJ.'S. Since one would expect the error in the analysis due to the use of 

integer frequencies w. to be of order 1/m, i.e. inversely proportional to the number 

of unit cells, it is evident that one should cnoose a large value of m to carry 

out the calculations. This in turn implies from Eq. (3.3) a large |u|. 

The analysis leading to Eq. (3.3) is based on the construction of unit 

cells which are exact hypercubes. Since |u|, m and n are all integers it may 

■16- 
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not be possible to fulfill  condition (3.3) exactly for all   (arbitrary) choices 

of in and n.    It is easy to show this.    Let us,  for instance,  square both sides 

of Eq.   (3.3) and lot n = 5.    We are then required to find an integer m such that 

we can express a sum of n squares,      |u|   ,  as m      .    Clearly,  this  is possible, 

if at all, only for certain special  values of m.    To be more realistic, we should 

weaken our criteria for uniformity of the point lattice by stipulating unit 

cells which are as close as possible to hypercubic and then rewrite Eq.   (3.3) as 

Uli (3.4) 
\t>\  * m    n 

For n » 1, for which both (3.3) and (3.4) reduce to |u| = m, it should be 

possible to obtain a more nearly exact hypercubic unit cell. 

The question as to the "optimum" choice of the u's has been considered by 

a number of authors, using a different approach from tnat presented above, in 

connection with the general problem of the approximate evaluation of multi- 

dimensional integrals via discrete summations^ '. Korobov's book has tables 

of o^'s for a given number of points m (for m prime) and dimension n up to 

n = 10. These tables are reprinted in the book by A. H. Stroud. It is inter- 

esting and comforting to note that although these tables were computed from 

completely different criteria than those employed by us, the Korobov u's indeed 

generate hypercubic unit cells to a very good approximation for all his sets oi w 

for which we have carried out the appropriate calculations. 

Korobov's analysis of the error in the use of integer frequencies yields 

explicit prescriptions for calculating the "optimum" set of u.'s as given in his 

tables. Our approach presented above does not yield sucn an explicit algorithm. 

We plan to develop such an algorithm and then compare our sets of Z with those 

of Korobov in a subsequent publication. 

■17- 

ÜMMMMMMMHIiM      ,      •jMtn -    



:-™-™iOTT™-!Tfrrs(r?EwT^ »r ■!W^wjmrw™w!JWT»WBB!)^WWIW M 

S 

frequency 
As stated above, if one wishes to decrease the error in the integer A analysis, 

one should use a large number  in of s points and thus a large |ia|. It can 

readily be verified from Eq. (2.6) that for large u.   one needs to evaluate 

c(s) for a larger number of s values in order to obtain an accurate value for 

the Fourier coelficient tv'1'.    This requires more extensive computer calculations. 

A reasonable compromise between these two effects needs to be adopted. 

The transformation from u space to 0 space as given by Eqs. (2.3) and (2.7) 

will also effect the error term since the specific transformation which is chosen 

determines the rate of change of the function c(s) as a function of s. We are 

faced here with an interesting problem in compensating effects. Either the 

transformation u. = 1^.(0) is singular or the weight function p(u.;a.) is singu- 

lar at one or more values of u.. For the chosen transform it is readily veri- 

fied from Eqs. (2.15) and (2.20) that u. diverges at 9 = n/2 and 9 = 3:i/2, but 

at these points pCu^a..) = 0. This same effect will be found fop any transfor- 

mation and its associated weight function. Tnus in the regions of 9 space 

where the transformation is divergent the associated weight function will 

always compensate. We are therefore led to expect that the choice of the 

transformation function will not significantly effect the final numerical results. 

This is born out by the data presented in paper II. 
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ABSTRACT 

r 

I i t 

The Fourier amplitude method developed in Part I as a diagnostic tool 

for determining the sensitivity of the results of complex calculations to the 

parameters which enter these calculations has been applied to two chemical 

reaction systems involving sets of coupled, non linear rate equations. These 

were: a) a 5 reaction set describing the high temperature (6000oK) dissociation 

of air and b) a 9 reaction set describing the constant temperature (2000oK) com- 

bustion of H2 and 0.. We have evaluated the Fourier amplitudes for all the 

species at a number of different times for both reaction systems. The analysis 

of these results verifies the claims made in part I. The relative magnitudes 

of the Fourier amplitudes showed a several order of magnitude distribution which 

permitted a clear distinction of the relative sensitivity of the species concen- 

tration to uncertainties in the rate coefficients. The conclusions based on the 

Fourier amplitude method for these two reaction systems are in excellent agreement 

with sensitivity predictions which could be made on the basis of previous kinetic 

studies of these systems. 
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I. INTRODUCTION 

In the preceding paper, hereafter referred to as I; ' we developed a 

diagnostic technique to investigate the sensitivity of the solution of large 

sets of coupled, non-linear equations to uncertainties or changes in the coupling 

parameters. For brevity, we will refer to this method as FAST, the Fourier 

Amplitude Sensitivity Test. In this paper wo wish to demonstrate the utility 

of FAST by applying it to a study of the sensitivity of two sets of coupled 

non-linear rate equations describing, respectively, the high temperature 

dissociation of air and the high temperature H0 - Op reaction. The specific- 

objective of the calculations described here was to determine the sensitivity 

of the various species concentrations at a particular time to assumed uncer- 

tainties in the rate coefficients which enter into these calculations. 

In Section II we summarize the steps which must be carried out in the 

application of FAST to any system of coupled non-linear equations and discuss 

the choice of frequencies and the number of sampling points to be used. In 

Section III, we present the sensitivity analysis for the two chemical reaction 

systems. Section IV contains some concluding remarks. 

II. GENERAL REMARKS ON APPLICATION OF FAST 

We wish to determine the sensitivity of an "output function", in our 

case the calculated concentration of a particular species at a particular time, 

to assumed uncertainties in the rate coefficients entering the rate equations. 

We write this output function as 

c(k1, k2 kn) := c{t) (2.1) 

where t  is the n- component vector of the rate coefficients L, k?, ..., k . 
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The application of FAST is carried out. via the following steps; 

Step 1) One must choose a set of n integer frequencies, {t^, t^ w }, 

where n is the number of independent rate coefficients which determine the 

value of the output function. 

Step 2) One frequency of this set is now assigned arbitrarily to each 

rate coefficient by (see 1.2.2): 

(o), u1 

U. - ujo) sin a^s 

(2.2) 

(2.3) 

s a parameter and where k.0^ is the best estimate of the rate coefficient, s i 

the u.^ 
i        are the endpoints of the estimated ranges of uncertainties of the 

rate coefficients k..    If a rate coefficient is known precisely, i.e. with zero 

uncertainty,  then k.  = k|o) which implies uj0) = 0.    The endpoints u!o) are 

specified as part of the input data and their values should be based on the best 

judgement of the investigator. 

Step 3) The output function c{t) = c[t(s)] is now Fourier analyzed in 

s to obtain the sine amplitudes A^ corresponding to the input frequencies u.. 

This analysis requires the evaluation of c[k(s)] for N values of s, where N is 

an integer which depends on the frequency spectrum of c[t(s)]. 

These steps will  now be discussed in more detail. 

a)    Choice of Frequencies u. 

In section III of part I we have presented a discussion of the choice 

of the sot of frequencies it) and have also given there a set of references 

(ref.  4) which contain both discussions of optimal  choices of sets of frequencies 

-3- ^u- 
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as well as tables of frequencies which could be used for FAST. For the calcu- 

lations presented hero wo have developed our own set of frequencies. We have 

done so to obtain a better insight in how to handle the calculations involved 

in the Fourier analysis method. In a follow-on study we plan to investigate 

whether our method of choosing frequencies yields better, equivalent or worse 

sets for use in FAST than those presented in reference 4 of part I. 

Since we. will carry out computer calculations, we are limited to rational 

(or, equivaler.tly, integer) frequencies. For the coupled non-linear equations 

under study here, this means that in addition to the input frequencies w. and 

their multiples, various linear combinations of integer multiples of w. 

("interference frequencies") will appear in the spectrum of c[lc(s)]. This 

presents.a problem in our analysis since the Fourier sine amplitude of frequency 

tü^ is to reflect only the effect of the uncertainty in the value of the rate 

coefficient k£. Clearly, if an interference frequency coincides with one of the 

input frequencies w., say w , the corresponding Fourier amplitude A  will not 

only reflect changes in k; but also in other rate coefficients. Thus, for 

example, if u, + tü„ - u. = w9, the amplitude A  is identical with A,      v 

and will therefore reflect not only changes in k2, but also in L, k. and k«. 

One therefore needs to choose a linearly independent set of input fre- 

quencies m.  such that 

E Vi ^0 ; 

i=l 
a. integer (2.4) 

for 

1=1 
|a.|  rs M + 1 (2.5) 
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where M is a parameter at the disposition of the investigator. We refer to 

sucli a set as being free of interferences to order M. The larger the chosen 

value of M, the greater the likelihood that the Fourier amplitude of each input 

frequency reflects solely the uncertainty of the corresponding rate coefficient. 

On the other hand, as discussed in section III of part I and below, the larger 

the chosen value of M, the larger the maximum value, u)      , of the input fre- 

quencies ^ which will still satisfy (2.4) and (2.5) and, correspondingly, the 

larger the sot N of points s which will bo required for the evaluation of the 

Fourier amplitudes. For the calculations presented in this paper we have chosen 

M = 4. In Table I we present sets of frequencies which are free of interferences 

to 4th older for systems with dimensionality n from 5 to 19, i.e. for systems 

with from 5 to 19 independent rate coefficients. These frequencies were 

determined via computer by a trial and error procedure. The sets of frequencies 

listed here have the smallest value of t^ satisfying conditions (2.4) and 

(2.5) and are referred to as "minimal sets". 

b) Assignment of Frequencies to Rate Coefficients 

The frequencies {^ , U2, ..., Wn) are assigned to the rate coefficients 

{k-,, k2, ..., kn} arbitrarily since the results of those calculations, in order 

to be useful, must be independent of both the frequency set and the assignment 

of the frequencies. To check that the spectrum of the output function does not 

contain interfering frequencies which coincide with the input frequencies, and 

thus affect the results, one should reassign the frequencies to the various rate 

coefficients and repeat the Fourier analysis. If the calculated Fourier ampli- 

tudes are invariant in magnitude and sign to these permutations, then the set of 

frequencies is free of interferences to the order of the dimensionality of the 

set of rate equations and the results of these calculations are reliable. If, 
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on the other hand, some of the Fourier amplitudes vary greatly with the pemiu- 

tions of the frequency assignments, a better set of input frequencies must be 

generated. By "better" we refer to a set {w) with a larger parameter M and a 

higher umy.    We have carried out such a permutation analysis for the N2 - 0? 

system discussed below and verified that our sets of input frequencies yielded 

Fourier amplitudes A^1 which were invariant-to the frequency permutations. 

c) Calculation of Fourier Amplitudes 

As discussed in section II of part I, we are only interested in the 

Fourier sine amplitudes. For an input frequoncv pi'i: irequoncy w , the amplitude is 

A 

2TT 

c[l;(s)] sin w s ds (2.G) 

To compute this integral, one must evaluate the function c[t(s)] at a set of 

points in the interval 0 ^s ^ 2-. In the absence of any information on the 

form of the output function c we take the points to be equally spaced in that 

interval, 

= --3-   a = 12 , N (2.7) 

where N is some integer. With these equally spaced points wo can now conveniently 

relate the Fourier coefficient A  as defined by the integral (2.6) to the sum 

N 
A* = S- E sin M s cDc(s )] w£  N ^     £ q L v q/J (2.8) 

where 

A* (2.9) 
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The error term   r.    is given by 

rn 

A(mN-oj.) 
Ji in-1      j 

(2.10) 

moi'» nere u. is any frequency in the spectrum of /[lUs)] which satisfies 

mN UJ " u£ (2.11) 

This error term is clue to "aliasing" which inevitably occurs whenever a finite 

number of points are chosen on an interval to evaluate Fourier amplitudes. For 

axample, if N equally spacad points are used, the amplitudes A^ for u ".'ill 

unavoidably include the amplitudes of a component of frequency w. present in 
J 

els) which satisfies the relation u =niN-iü. where m is an arbitrary integer. 

The value of N is chosen to be the smallest integer such that 

Y^ b^j f  mN   ,  b.,ni integers 

i=l 
(2.12) 

for 

i=l 
(2.13) 

The Fourier amplitudes A  have been evaluated using Eqs. (2.8) through (2.10). 

If the output function c(k) could be expressed as a polynomial of degree 

loss than or equal to M in the variables u., i = 1 , ..., n, where (see Eq. 2.2) 

, (o) 
Uj ~-  In   (K /k. ) 

then the conditions (2.12) and (2.13) imply that e  = 0 so that 

(2.14) 

A* - A 

-7- CL* 
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m The conditions (2.11) through (2.13) also clGternrine N the mininiuni number of s 

points required for the evaluation of cDUs)]. These are listed in Fahle I. 

The Fourier amplitudes are related to a multiple integral of an output 

function over the uncertainty space (sec I. 2.12). One way of obtaining the 

Fourier amplitudes without the troublesome interferences and aliasing involved 

in the method discussed above would be to evaluate the n-dimensional integral 

of Eq. (I. 2.12) directly. We have done this v1a_ simple Monte Carlo integrations. 

Our results show that the number of integration points required by the Honte Carlo 

method to give a comparable accuracy is much greater than the number required 

in the Fourier analysis. Stated another way, for a given number of integration 

points (we used 200), the degree of accuracy of the Fourier method detailed 

above far surpasses that of tiie Monte Carlo integration, 

d) Choice of the Weight Function 

As emphasized in I, our final result, i.e. the relati on 

A^«^/^) (2.16) 

involves a weight function p(u.) which can be interpreted as a distribution 

function in u space which weights the uncertainty in the rate coefficients. In 

our treatment in part I, we used the weight function (see Eq. 2.20) 

P^.) = cosh a .u. (2.17) 

which had several desirable properties. It is, for instance, bell shaped about 

u.=0 corresponding to k.=k{0S the "best" value of the rate coefficient k.. 

For computational convenience, we have used two different weight functions for 

the calculations presented in section III below corresponding to two different 
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transformations u. = u(to.s). As. we had hoped and expected, our results did not 

depend significantly on the choice of the weight function. This indicates that 

our output functions c(k) were "well behaved", i.e. did not have any large local 

excursions in u space. It is also in agreement with the discussion in the last 

paragraph of section JII of part I. 

As is shown in part I, the form of the weight function p(u.) depends upon 

the choice of the transformation function f of Eq. (1.2.3). For the Fourier 

amplitude method to be at all useful, our results on the relative magnitudes of 

the Fourier amplitudes must clearly be independent of the explicit form of the 

transformation function. The insensitivity of our results to our choice of 

transformation function (and thus of the weight functions) verifies the validity 

of FAST in this respect. 

III. APPLICATION OF FAST TO CHEMICAL SYSTEMS 

We have applied FAST to two relatively simple reaction systems as a 

test of its utility as a diagnostic tool. Both systems were assumed, for 

simplicity, to react at constant temperatures and volume. These restrictions 

are in no way necessary for the application of FAST. The concentrations were 
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integrated in time with a code using Gear's'2' algorithm. These integrations 

were carried out once for each of the II value; of s with the corresponding 

values of the n rate coefficients, ^(s), up to some time t. This yielded the 

output function CjD^sht], i.e. the concentration of species i, i-1, 2 m, 

as a function of time. The Fourier analysis of c^'l^s) ,t.l was then carried out 

at several selected times. The uncertainties in the rate coefficients wore 

arbitrarily assumed to be much larger than warranted by the available experi- 

mental data in order to check out FAST. It should therefore be pointed out 

again that the primary purpose of the calculations presented here is to demonstrate 

the validity and utility of FAST as a diagnostic tool and not to provide new 

information about the selected reaction systems, 

a) High Temperature Air Reaction 

We consider the following simplified reaction systenr3^ 

02 = M T~' 20 + M 

N2 + M .—••:.■' 2N + M 

No + M ^^ N + 0 + M 

N0 + 0 ?=* NO + N 

0Z +  N t=d   NO + 0 

kl' Kl 

2' 2 

k3, K3 

^4» K4 

k5' K5 

(1) 

(2) 

(3) 

(4) 

(5) 

The rate coefficients k., i=l, .... 5, refer to the forward reactions, the rate 

coefficients k_1 for the reverse reactions are obtained from the equilibrium 

constant K. through the relation K. = l^./k^. In the system and the one dis- 

cusseo below in IIlb, the equilibrium constants are assumed to be known exactly, 

i.e. with zero uncertainty. The forward and reverse rate coefficients k., k . 

for each reaction therefore have identical uncertainties and the number of 
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independent uncertainties is equal to the number of equilibrium constants. It 

is, of course, not necessary to proceed this way and one can instead assign 

different, uncertainties to the forward and reverse rate coefficients which reflect 

uncertainties in the equilibrium constants. 

The system was assumed to react at a constant temperature of 6000oK and 

constant volume. The rate coefficients, equilibrium constants and initial con- 

ditions used in this calculation are shown in Table II. 

The equilibrium constants represent the latest and "best" literature values we 

could find and the rate coefficients listed in this table are the k!0^ of 

Eq. (2.2). In Fig. 1 we show a plot of the time evolution of this reaction 

system obtained from the integration of the rate equations using the rate 

(n) 
coefficients k. ' of Table II. 

While the real uncertainly of these rate coefficients is not too large, 

we assumed arbitrarily for the purpose of testing FAST that the experimental 

uncertainties were ± two orders of magnitude for each of the five independent 

sets of rate coefficients. To take account of this uncertainty we then write 

(see Eq. (2.2)) 

k^e-^.k^kj0)^  ;  i = 1 5   .       (3^ 

For our sensitivity analysis we used the frequency set (see Table I) 

{(ü) = (2, 42, 62, 74, 90) (3.2) 

for which the smallest number N of evenly spaced points satisfying the conditions 

of Eqs.   (2.4,  2.5, 2.12, 2.13)  in the s interval, O^s £ 2*,  is 191. 

We carried out the Fourier analysis of the output function c.[[t(s)] at 

t = 10"    sec and 10"'   sec.    From Eqs.   (2.2),  (2.3) and (3.1) we have 

ui = 4.G06 sin u.s (3.3) 
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The concentrations of the various species, Ng, Og, NO, 0, I!, were calculated 

at 10"6 see and lO"'1 sec for each of the 191 s values by integrating the rate 

equations. The 191 values of the concentration of the above species at a given 

time define the ogtput function c.Ct(s)] which is now Fourier analysed by 

computing the Fourier coefficients from Eqs. (2.8) through (2.13) using the set 

of input frequencies of Eq. (3.2). An example of the function c^l.F^s)] for MO 

at t = 10"4 sec is shown in Fig. 2.    This curve has been drawn by connecting 

the 191 calculated concentrations of HO (one for each of the 191 evenly spaced 

values of s) by straight lines. 

The results of the Fourier analysis at t = 10" ; sec are shown in Table 

III. The high values of the Fourier amplitudes associated with the rate coef- 

ficients k-,, k 1 for the concentration of 0 and 0^ (see blocks 1 and 2 of 

Table III) indicate that a variation in 1^ and k_1 has a greater effect on the 

concentration of 0 and 02 than the variation of any of the other rate coefficients 

This follows immediately from Eq. (2.16), where now i refers to the 0 atoms 

and 0« molecules and u = 2 refers to the rate coefficients k-j and k_1. We can 

rephrase this by saying that, at this early time in the reaction, only reaction 

(1) is important in the production of 0 atoms and the disappearance of 0,, 

molecules. The sign of the amplitudes in the last column can be understood from 

Eq. (2.16) according to which the amplitude /V1) is proportional to Oc./ou^). 

Thus the negative sign of the Fourier amplitude for k-j for the concentration of 

Op (block 1, Table III) simply indicates that [Og] decreases with increasing ky 

The positive sign for the Fourier amplitude for k-j for the concentration of 0 

atoms (block 2, Table III) indicates that [0] increases with increasing k-,. 

From the relative magnitudes of the Fourier amplitudes in blocks 4 and 5 of 

Table III, it will be note! that the formation of N and NO at these early times 

•12- A. 
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in the reaction is most sensitive to reactions (1) and (4). This is quite 

reasonable since -L t = 10"C sec the formation of N and NO via reactions {?.) 

and (5) cannot play any important role owing to the small value of k^  as 

compared to k}0' (see Table II). A number of other conclusions as to the 

sensitivity of the concentrations of the various species with re^. ujt to vari- 

ation of the rate coefficients can be drawn from a study of the results in Table 

III. All these conclusions are in' accord with one's knowledge and intuition of 

this rather simple reaction system. 

In Table IV we present our results for t = 10" sec. At this time, as 

can be seen from Fig. 1, the concentrations of reactants and products are, 

except for iL, significantly different from their initial values. The coupling 

between the various reactions has come into play much more strongly at this later 

time and one would expect that the influence of the uncertainties in the rate 

coefficients on the concentrations of the various species is more complex. This 

can readily be verified from the data in Table IV, where there is now no longer 

such a pronounced order of magnitude effect in the Fourier amplitudes. Let us 

arbitrarily use a factor of about 10 to distinguish between the "relatively 

important" amplitudes (i.e. the concentration of the species is very sensitive 

to the change of a specific rate coefficient) and the "relatively unimportant" 

amplitudes (i.e. the concentration of the species is not very sensitive to bhe 

change of a specific rate coefficient). Then the data of Table IV indicates 

that [0?] and [0] are affected primarily by uncertainties in 1^ , [Ng] is 

affected about equally by uncertainties in all of the rate coefficients, [N] is 

most affected by uncertainty in k,, and [NO] is least affected by uncertainty 

in k0. The least "sensitive" rate coefficient is k2, which determines the rate 
c. 

■13- A. 
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of dissociation of Ng. This is not surprising since [7
(o) is smaller than the 

other rate coefficients by 2  to 4 orders of magnitude. The important point to 

note is that owing to the strong coupling of all the reactions at this stage of 

the kinetic development, a number of the elementary rate processes contribute 

significantly to the production and removal of most of the species, so that the 

concentration of these species are quite sensitive to uncertainties in several 

rather than just one rate coefficient. This result is certainly not unexpected. 

b) The H2 - 02 Reaction 

The H2 - 02 combustion system was modeled by the following set of chemical 
(4) reactionsv ': 

o2 + 

OH + M  <  ■ > 0  i  H + M 

H20 + M (=* II + Oil + M 

H    + 02F=* Oil + 0 

0    + Il2 <=± OH + II 

H2 + 011^—  ll20 + II 

02 + H2 f=^ 2011 

OH + OH 1?=* H20 + 0 

The system was assumed to react at a constant temperature of 2000oK and constant 

volume, with only ll2 and 02 present at t = 0. 

The initial conditions, rate coefficients and equilibrium constants are 

shown in Table V. The rate coefficients listed in this table are the k!0^ of 

Eq. (2.2); the equilibrium constants are assumed to be known with zero uncertainty. 

kr Kl (1) 

k2, K2 (2) 

k3, S (3) 

kv K4 (4) 

k5' l;5 (5) 

h' K6 (6) 

k7. K7 (7) 

k8' ,C8 (8) 

kg> Kg (9) 

-14- ^ 
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We assumed arbitranly that the experimental uncertainties for each of 

the nine independent rate coefficients were i one order of magnitude so that 

k^e-2-303.k. ^(o) 2.303  . 

For our analysis.we used the frequency sot 

1-1.2, ..., 9 (3.4) 

(üJ) - (19, 59, 91, 113, 133, 143, 149, 157, 161) (3.5) 

for which the smallest number N of evenly spaced points in the s interval, 

0 s: s £ 2t, is 630. 

A plot of the concentrations of the various species for the time interval 

10" --: t ^ 10 seconds, calculated with the k.|0) of Table V is shown in fig. 3. 

We have employed FAST to study the sensitivity of the species concentrations to 

uncertainties in the rate coefficients at 10"8 seconds and TO"3 seconds. These 

results are shown in Tables VJ and VII. 

At the very early time of lO"8 seconds (Table VI), the H2 and 02 concen- 

trations have not changed significantly from their original value (to within 

8 significant places) and the Fourier amplitudes are merely round-off error. 

For H atoms, reaction (1) seems to be the major contributor to its formation 

at this early time and its rate coefficient is the most sensitive in determining 

the accuracy of [II]. Reactions (7) and (8), which together also produce II atoms, 

are also important but the concentration of H atoms is not as sensitive to k 

and kg as it is to ^ . The sensitivity of [II] to these two rate coefficients has 

identical values which is not surprising since [H] is proportional to k^kg at 

this early time. The same argument also holds for the production of H20 since 

its concentration at lO^seconds is proportional to k^kg. The ly) concentration 
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is also sensitive to l;r, since reaction (5) appears to be partly responsible 

for the production of the Oil which enters into reaction (7). The concentration 

of 0 atoms is most sensitive to kp which is again as expected. Finally, the OH 

concentration is most sensitive to kQ which is also most reasonable, since at 
Ü 

this early time, only the direct reaction between 02 and IL would bo expected- 

to effect the Oil concentration. Again, the results of FAST are in good agreement 

with what could bo predicted on the basis of chemical knowledge. 

At t - 10 ' seconds (Table VII) the story is quite different. As can be 

seen from Fig. 3, significant changes from the initial concentrations have 

occured by this time, and the reactions are now strongly coupled. This is 

reflected in the array of Fourier amplitude in Table VII as compared to those 

of Table-VI. How, for instance, rate coefficient kr corresponding to the chain 

branching step (5) which produces H and 0 atoms is the most influential one in 

controlling the concentration of all species, The II atoms concentration, in 

addition, is equally sensitive to ky. All other rate coefficients, except for 

k^, which is very small for all species, have about equal sensitivities to 

within a factor of 10 as measured by their Fourier amplitudes. According to 

our theory and calculations then, the rate coefficient which needs to be 

determined with the highest accuracy for the accurate calculation of all species 
_3 

concentration at 10  seconds is k,- with k-, next in line. Uncertainties in the 

other rate coefficients will have a smaller effect on the species concentrations. 

-16- *- 
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IV. CONCLUDING REMARKS 

It should be realized that the applications presented here are only a 

first cut at the subject. It appears that PAST is a useful diagnostic tool in 

determining the sensitivity of the results of complex calculations to the 

parameters which enter the calculations. The Fourier amplitude method cle.rly 

needs further testing on more complicated systems than the ones dealt with in 

this paper. Such tests should also involve comparison with various types of 

"brute force" calculations. 

In addition to applications to larger systems, there are also a number of 

theoretical-computational questions which need further investigation. Some 

examples are: the influence of the range of uncertainties, with different 

uncertainties for different coupling parameters, on the relative magnitudes of 

the Fourier amplitudes; the influence of the choice of the input frequencies M 

and the spacing of the fj values of the parameter s on the Fourier amplitudes; and 

the question whether the absolute magnitude of the Fourier amplitudes can be 

used as a predictor for the actual change of the output function for a given 

change of the coupling parameter. Additional work is being carried out to answer 

those questions. 
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RGUIU-  CAPTION 

'■'iy-  1- Titne evolution of the f^ - 02 system based on the kinetic data 

in Table II. 

t 

Fig. 2, TiiG function ^.[(((s)] for K'O at lü"4 sec between 0 and Zv  as 

a function of s. This curve has been drawn by connecting the 

131 calculated values of the concentrations of NO (corresponding 

to the 191 values of s) by straight lines. 

Fin. 3. Time evolution of the \\? -  0^ systems between t ■■- 10"4 sec to 

t = 10 sec based on the kinetic data in Table V. 
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Dimension (n) 

5 

5* 

6 

C* 

7 

8 

9 

10 

n 

12 

13 

14 

Table I 

FREQUENCY SETS AND CORRESPONDING NUMBER OF 
POINTS AVOIDING INTERFERENCES 

THROUGH 4th ORDER 

Frequency Set (u) Minimum Number of Points (N) 

11, 21, 27, 35, 39 

2, 42, 62, 74, 90 

• 1» 21, 31, 37, 45, 49 

2, 42, 62, 74, 90, 98 

17, 39, 59, 69, 75, 83. 87 

23, 55, 77, 97, 107, 113, 
121, 125 

19, 59, 91, 113, 133, 143 
149, 157, 161 

25, 63, 103, 135, 157. 177, 
187, 193. 201, 205 

41, 67, 105, 145, 177, 199, 
219. 229, 235, 243, 247 

31, 87, 113, 151, 191, 223, 
245, 265, 275, 281, 289, 293 

23, 85, 141, 167, 205, 245 
277, 299, 319, 329, 335, 343, Ml 

87, 133, 195, 251, 277, 315, 
355, 387, 409, 429. 439, 445. 
/K;^ /II;7 

142 

191 

182 

231 

334 

486 

630 

806 

974 

1158 

1374 

1814 

;?*-< 
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Table II 

INITIAL CONDITIONS, RATE COEFFICIENTS AND EQUILIBRIUM 

CONSTANTS FOR THE HIGH TEMPERATURE AIR REACTION 

Initial Conditions 

[Ng] = 8 x 10"8 moles/cc 

[02] = 2 x 10"8 

Rate Coefficients 

k{0^ = 8.5 xiO10 (moles/cc)"1  sec'1 

k^ = 3.0 x  I07 

k^ = 8.0 x 109 

k[o) = 9.0 x 1010       " 

k^ = 8.0 x 1011 

Equilibrium Constants 

K,  = 7.8 x 10"4 (moles/cc) 

K2  = 1.0 x 10"7 

K3  = 1.3 x 10" 

K4  = 9.0 x 10 
-3 

K5  = 5.9 x 10' 

Z3^ 
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Table III 

FOURIER AMPLITUDES UF THE CONCENTRATIONS AT 10"6 SEC 
FOR THE HIGH TEMPERATURE AIR SYSTEM 

f 

Input Frequency . Rate Coefficient Fourier Amplitude 

[o2] 
g 

x 10 moles/cc 

2 ki -4.47 

90 k5 -0.0244 

74 k4 -0.0227 

42 k2 -4.7 x lO-4 

62 k3 -3.9 x 10"4 

[0] x 
g 

10 moles/cc 

2 ki 8.53 

74 k4 -0.36 

90 k5 0.018 

62 k3 -0.029 

42 k2 0.0027 

[N23 x 10
9 moles/cc 

2 kl . -0.389 

74 k4 -0.386 

MMMM 
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Table IV 

6 

f 

v-4 FOURIER AMPLITUDES OF THE CONCENTRATIONS AT 10"q SEC 
FOR THE HIGH TEMPERATURE AIR SYSTEM 

Input Frequency 

2 

90 

74 

62 

42 

2 

62 

90 

42 

74 

74 

2 

62 

Rate Coefficient 

[02] x 10° moles/cc 

kl 

k. 

£ [0] x 10° moles/cc 

ki 

[N2] x 10   moles/cc 

k4 

kn 1 

Fourier Amplitude 

-1.1 

-0.147 

-0.087 

-0.069 

-0.044 

2.17 

0.228 

0.164 

0.078 

-0.00146 

-2.6 

-2.3 

-1.0 

f 
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Table V 

Initial Conditions, the Rate Coefficients and Equilibrium 
Constants for the hL - Op Reaction 

Initial Conditions 

-9 
[H2] = 8.0 x 10  moles/cc 

[02] = 4.0 x 10~9 moles/cc 

f 
Rate Coefficients 

-1   . -1 k° - 5.78 x 10^ (moles/ccr'sec 

k^ = 4.47 x 103 

1(3 = 1.03 x 105 

k° = 6.79 x 105 

k° = 1.23 x 1012 

Equilibrium Constants 

^ = 1.59 x 10"11 moles/cc 

-12      .. K2 = 2.69 x 10 

K3 = 1.14 x 10 

K4 = 1.63 x 10 

•11 

-12 

4.0 x 1013 (moles/cc)"1sec"1 

13 = 1.51  x 10 

2.20 x 10l 

1.6 x  i014 

Kf = 

Kft = 

1.4 

9.76 

2.02 

6.76 

•& 

K5 = 2.37 x 10' 

^' 
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Table VI 

FOURIER AMPLITUDES OF THE CONCENTRATIONS AT 10"8 SEC 
FOR THE H2 - 0?,REACTION 

Rate Coefficient     Fourier Amplitude 

[Hg]. 

Insensitive to uncertainties 
in any rate constant. 

[H] x 1019 

Rate Coefficient     Fourier AmplitudP 

[o2] 

Insensitive to uncertainties 
in any rate constant. 

[0] x 10 20 

a, 

I f 

1 T . U/ k2 1.79 
k8 0.202 

k6 -0.016 
k7 0.202 

kl 0.0065 
k5 0.010 

k5 0.0065 

\ 0.0023 
k3 2.25xl0"5 

h 0.00165 k4 -1.95xl0"5 

k4 8.0xl0"5 
k9 7.87xl0"6 

k9 4.1xl0"5 
k8 1.20xl0"6 

k3 -3.0xl0"5 
k7 -8.46xl0"7 

[OH] x 1018 

[H20] x 10^ 

"a 5.9 
k8 2.03 

k7 -0.0203 k7 2.03 
k9 0.00176 k5 0.121 

■ 

k5 -.0.0014 k6 0.0066 

k
2 

KSlxlO"4 
k4 8.35xl0"4 

k6 9.73xl0"5 
kl -6.35xl0"4 

kl 7.08x10"5 
k9 4.22x10"4 

k4 -7.43X10"6 
k3 -2.81xl0"4 

k3 3.13X10"6 

'   k2 1.33xl0"4 
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—"—— - — i—fUMmiim i   



■' ■-■■■■ ■■.,. ■,.,:,,., 

t ■MWWfllillWIIIIWMIIililllllMBgWWMiWtllMJUMIIIIHIWI^^ 

r l"' 

I 

t 

11 

Table VII 

FOURIER AMPLITUDES OF THE CONCENTRATIONS AT 10'3 SEC 
FOR THE H2 - 02 REACTION. 

Rate Coefficient Fourier Amplitude 

^8 

CH2] x 10
9 

[02] x 10
9 

-3.71 

-0.346 

-0.313 

-0.172 

-0.108 

-0.101 

-0.0905 

-0.0491 

0.0119 

^8 

-1.77 

-0.153 

-0.089 

-0.070 

Rate Coefficient Fourier Amplitude 

K8 

K4 

[H] x 109 

1.92 

1.92 

0.122 

0.102 

0.061 

0.0466 

0.0439 

0.0176 

-0.00318 

[0] x 1010 

5.77 

0.420 

0.164 

0.162 
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values of the various rate coefficients exist in the 

literature but feel that the values used in our 

calculations are adequate for the purpose of this 
paper. 

4. The equilibrium constants were calculated from the 

data in McBride (see Ref.2.); the rate coefficients 

were obtained from the compilation of G.S. Bahn, 

Reaction Rate Compilation for the H-O-N System, 

Gordon and Breach Science Publishers, New York (1968). 
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